
Symbolic roles in
vectorial computation

Paul Smolensky
Cognitive Science Dept
Johns Hopkins Univ

x1 x2 x3

W

W

y1 = tanh(W[x1;y2] + b)

W

y2 = tanh(W[x2;y1] + b)

x4

y1 = tanh(W[x3;x4] + b)

Figure 1: An example tree with a simple Recursive Neural Network: The same weight matrix is
replicated and used to compute all non-leaf node representations. Leaf nodes are n-dimensional
vector representations of words.

We first describe recursive neural networks and how they were used in previous approaches. We
explain how they can be modified to jointly learn representations and predict structure. We then
define the optimization objective and draw connections to structure prediction. Lastly, we show
possible extensions for joint learning of the parser and category classifiers for phrases in the tree.

2.1 Recursive Neural Networks

Unlike standard neural networks, recursive neural networks (RNNs) are able to process structured
inputs by repeatedly applying the same neural network at each node of a directed acyclic graph
(DAG). In the past they have only been used in settings where another (often symbolic) component
was first used to create directed acyclic graphs. These DAGs were subsequently given as input to the
RNN. In such a setting, each non-leaf node of the DAG is associated with the same neural network.
Fig.1 shows an example of a DAG which is a binary tree. In other words, all network replications
share the same weights. The inputs to all these replicated feedforward networks are either given by
using the children’s labels to look up the associated representation or by their previously computed
representation.

While in principle n-ary DAGS can be used as input to the RNN, we now focus on binary trees for
ease of exposition.3 Fig. 1 shows an instance of a RNN applied to a given binary tree. Assume we
have an input of vectors (x1, . . . , xn) each of which has the same dimensionality xi ∈ Rn. In the
original formulation these were one-on vectors [GK96]. Assume we are also given a binary tree in
the form of branching triplets (p → c1c2). Each such triplet denotes that a parent node p has two
children and each ck can be either an input xi or a non-terminal node in the tree. For the example
in Fig.1, we would get the triples ((y1 → x3x4), (y2 → x2y1), (y1 → x1y2)). Note that in order
to replicate the neural network and compute node representations in a bottom up fashion, the parent
must have the same dimensionality as each of its children. Given this tree structure, we can now
compute activations for each node from the bottom up by

p = tanh(W [c1; c2] + b), (1)

where c1, c2, p ∈ Rn×1, the term [c1; c2] denotes the concatenation of the two child column vectors
resulting in a R2n×1 vector and hence W ∈ Rn×2n. At the top one can then stack some classification
or regression layer.

2.2 Recursive Neural Networks for Structure Prediction

We now extend RNNs to construct the tree in a bottom-up fashion. We first compute the input to
the parser in a similar way as [CW08]. Assume we are given a list of words. The input vectors
(x1, . . . , xn) come from a look-up table of dimensionality L ∈ Rn×|V |, were |V | is the size of the
vocabulary. Each word in the input sequence has an associated index k into this table. Mathemati-
cally, the look-up can be seen as a simple projection layer where we use a binary vector b which is

3Focusing on binary trees will also allow us to develop efficient (cubic) dynamic programming algorithms
for training and testing.

3

A single vector encodes (i) all the (vectorial) labels
and (ii) the (discrete) structure in which they reside

Cognitive motivation:
vector ~ neural state

Each
— designed or learned

[Approach 2: Contextual (~
Approach 1: Absolute position

rk is assigned a vector encoding
n-gram)]

rk ∈ R (linearly indep.)

Can be non-orthogonal:
− rk • rl ≡ sim(rk, rl) ≠ 0
− interaction of rk & rk
− generalization

Let

Each

ENCODING

—
— designed or learned

— designed or learned

[Approach 2: Contextual (~
Approach 1: Absolute position

fk
fk

r

∈

k

may be a vector encoding of a symbol

is assigned a vector encoding

F (linearly

: v = ∑

indep

k fk ⊗

.) be the label in role

rk

n-gram)]
rk ∈ R (linearly

r
f

k

k ∈ A

indep.)

Tensor Product Representations
(TPRs: 1990)

Size: linear in number of roles

Can be recursive:

∀x ∈ {0, 1}*

s = p ⊗ r0 + q ⊗ r1

s!

p q

⇒ exact computation of
recursive functions

Let

Each

ENCODING
—

fk
fk

r

∈

k

may be a vector encoding of a symbol

is assigned a vector encoding

F (linearly

: v = ∑

indep

k fk ⊗

.) be the label in role

rk

rk ∈ R (linearly

r
f

k

k ∈ A

indep.)

N.B.: Turns out to have important (indirect)
implications for grammatical theory

What symbolic functions can
be computed over TPRs using
neural computation?

The functions in the following classes are
computable in a linear neural network:

B = base of in-place symbol mappings
C = closure under composition of

[tree-manipulating primitives∪ B]
P ~ “primitive recursive”

!!
f (s) =

g(s) if!atom(s)
h(f (ex

0
(s)), f (ex

0
(s))) otherwise

⎧
⎨
⎪

⎩⎪

‘Primitive recursive‘:
C ⊂ P!
g, h∈ P ⇒ f∈ P when!

1

APPLICATION: Decoding
neuroimages of combinatorial
stimuli (e.g., sentences, words).
Instance bindings {fk

(α) /rk } of
stimuli are known, so only need
learn the TYPE encoding

TYPE: What are

an instance of a symbol structure of a single type

SAMPLE

Learning algorithms: derived from generative model

Hypothesis:

INSTANCE: For a given

INSTANCE

v

which symbol

f

(

k

α)

=

=

v ·

∑k

rk

f

+

k

{

(

{

α

v
v

)

(

v

(

⊗

α

α

)

: Inner product

f

— given

)

}

{

r

}

k

r

k

(

is a collection of TPRs, each encoding

k

: Generative model

α

}

)∈

and

— where

A
α,

{

fills each role

f

{

k

r

}

k}

?

fk
(α) encodes a symbol

rk?

fk
(α)

Let

Each

ENCODING

—
— designed or learned

— designed or learned

Approach 2: Contextual (~
Approach 1: Absolute position

fk
fk

r

∈

k

may be a vector encoding of a symbol

is assigned a vector encoding

F (linearly

: v = ∑

indep

k fk ⊗

.) be the label in role

rk

n-gram)
rk ∈ R (linearly

r
f

k

k ∈ A

indep.)

A

A

pproach 2: [filler

pproach 1: [filler]

encoding is:

(used in cognitive models)

If X fills this role, vector

R(—,

≅

Y

X
R

Role
)

1

⊗

⊗

]

⊗

⊗

(R
X

[position]

[filler

⊗

⊗

Y
Y
)

2]

P

Few leaders are admired by George Bush

ƒ

“Passive	 sentence

Aux V by

”

V

ƒ(

A

s

W

) =

=

Meaning	 (LF)

cons

W
W

Isomorphism

A

cons

cons

ψ

(ex
cons

0

1

[
[
W
W

1(ex

ex

cons

(

!

ex

1W

0(

0

ex
1

(
ex

W

(ex

P

1

0W

(

ex

s
1(
)))

1

ex

ex

W

ƒ

,

1

!

] +
ex

1(s

1W

))),

ex

ex

1)+

0

W

(

admire(George	 Bush,	 few	 leaders)

s

cons

)))

ψ

1

Patien

B

(

t

Input

W

D C Aux

ex0

F b

)

y

]

Agent

F

G

W

Output

B

Patient
D C

E G

