

Paul Smolensky Cognitive Science Dept Johns Hopkins Univ

Symbolic roles in vectorial computation

— in contrast to hybrid symbolic/vectorial representations

A single vector encodes (i) all the (vectorial) labels **and** (ii) the (discrete) structure in which they reside

Cognitive motivation: vector ~ neural state

Socher, Manning & Ng 2010

TYPE: Decompose structure into roles $\{r_k\}$ Approach 1: Absolute position [Approach 2: Contextual (~ *n*-gram)] Each r_k is assigned a vector encoding $\mathbf{r}_k \in R$ (linearly indep.)

— designed or learned

Can be non-orthogonal:

- $-\mathbf{r}_k \cdot \mathbf{r}_l \equiv \sin(\mathbf{r}_k, \mathbf{r}_l) \neq 0$
- interaction of $\mathbf{r}_k \& \mathbf{r}_k$
- generalization

TYPE: Decompose structure into roles $\{r_k\}$ Approach 1: Absolute position[Approach 2: Contextual (~ *n*-gram)]Each r_k is assigned a vector encoding $\mathbf{r}_k \in R$ (linearly indep.)— designed or learned

INSTANCE: Specific fillers for roles

osoft Research Faculty Summit 2014

Let $\mathbf{f}_k \in F$ (linearly indep.) be the label in role r_k — \mathbf{f}_k may be a vector encoding of a symbol $\mathbf{f}_k \in A$ — designed or learned ENCODING: $\mathbf{v} = \sum_k \mathbf{f}_k \otimes \mathbf{r}_k$

 \mathcal{V}_{χ} Can be recursive: $\forall x \in \{0, 1\}^*$ r_{0x} r_{1x} $\mathbf{r}_{0x} = \mathbf{r}_0 \otimes \mathbf{r}_x$ $R = \bigoplus_{d} R^{(d)}$ S $\mathbf{s} = \mathbf{p} \otimes \mathbf{r}_0 + \mathbf{q} \otimes \mathbf{r}_1$ \Rightarrow exact computation of recursive functions Size: linear in number of roles **Tensor Product Representations** (TPRs: 1990)

Summary: TPRs

TYPE: Decompose structure into roles $\{r_k\}$

Each r_k is assigned a vector encoding $\mathbf{r}_k \in R$ (linearly indep.)

INSTANCE: Specific fillers for roles Let $\mathbf{f}_k \in F$ (linearly indep.) be the label in role r_k

— \mathbf{f}_k may be a vector encoding of a symbol $\mathbf{f}_k \in A$

ENCODING: $\mathbf{v} = \sum_k \mathbf{f}_k \otimes \mathbf{r}_k$

N.B.: Turns out to have important (indirect) implications for grammatical theory

Computability theory over TPRs

What symbolic functions can be computed over TPRs using neural computation?

The functions in the following classes are computable in a linear neural network:

B = base of in-place symbol mappings

 $\mathcal{C} = \text{closure under composition of} \\ [tree-manipulating primitives ~\cup~ \mathcal{B}]$

 \mathcal{P} ~ "primitive recursive"

'Primitive recursive':

$$C \subset \mathcal{P}$$

 $g, h \in \mathcal{P} \Rightarrow f \in \mathcal{P}$ when
 $f(s) = \begin{cases} g(s) & \text{if atom}(s) \\ h(f(ex_0(s)), f(ex_1(s))) & \text{otherwise} \end{cases}$

Microsoft Research Faculty Summit 2014

Decoding TPRs

INSTANCE v: Inner product

```
\mathbf{f}_k = \mathbf{v} \cdot \mathbf{r}_k^+ \quad - \text{given } \{\mathbf{r}_k\}
```

SAMPLE $\{v^{(\alpha)}\}$: Generative model

Hypothesis: $\{v^{(\alpha)}\}\$ is a collection of TPRs, each encoding an instance of a symbol structure of a single type

$$\mathbf{v}^{(\alpha)} = \sum_{k} \mathbf{f}_{k}^{(\alpha)} \otimes \mathbf{r}_{k}$$
 — where $\mathbf{f}_{k}^{(\alpha)}$ encodes a symbol $\mathbf{f}_{k}^{(\alpha)}$

Learning algorithms: derived from generative model

```
TYPE: What are \{\mathbf{r}_k\} and \{\mathbf{f}_k\}?
```

INSTANCE: For a given α ,

which symbol $f_k^{(\alpha)} \in A$ fills each role r_k ?

APPLICATION: Decoding neuroimages of combinatorial stimuli (e.g., sentences, words).

Instance bindings $\{f_k^{(\alpha)}/r_k\}$ of stimuli are known, so only need learn the TYPE encoding

TYPE: Decompose structure into roles $\{r_k\}$ Approach 1: Absolute position

Approach 2: Contextual (~ *n*-gram)

Each r_k is assigned a vector encoding $\mathbf{r}_k \in R$ (linearly indep.) — designed or learned

INSTANCE: Specific fillers for roles

Let $\mathbf{f}_k \in F$ (linearly indep.) be the label in role r_k — \mathbf{f}_k may be a vector encoding of a symbol $\mathbf{f}_k \in A$ — designed or learned

ENCODING: $\mathbf{v} = \sum_k \mathbf{f}_k \otimes \mathbf{r}_k$

crosoft Research Faculty Summit 2014

5TH ANNUAL

R(__, Y) Role

If X fills this role, vector encoding is: $X \otimes (R \otimes Y)$ $\cong R \otimes X \otimes Y$ (used in cognitive models)

Approach 1: [filler] \otimes [position] Approach 2: [filler₁] \otimes [filler₂] Few leaders are admired by George Bush

admire(George Bush, few leaders)

 $f(s) = cons(ex_1(ex_0(ex_1(s))), cons(ex_1(ex_1(ex_1(s))), ex_0(s)))$ $W = W_{cons_0}[W_{ex_1}W_{ex_0}W_{ex_1}] + W_{cons_1}[W_{cons_0}(W_{ex_1}W_{ex_1}W_{ex_1}) + W_{cons_1}(W_{ex_0})]$

