Paul Smolensky Cognitive Science Dept Johns Hopkins Univ

Symbolic roles in vectorial computation

Vectorial encoding of symbolic structure

— in contrast to hybrid symbolic/vectorial representations
A single vector encodes (i) all the (vectorial) labels and (ii) the (discrete) structure in which they reside

Cognitive motivation:
vector ~ neural state

Socher, Manning \& Ng 2010

Vectorial encoding of symbolic structure

TYPE: Decompose structure into roles $\left\{r_{k}\right\}$
Approach 1: Absolute position
[Approach 2: Contextual (~n-gram)]
Each r_{k} is assigned a vector encoding $\mathbf{r}_{k} \in R$ (linearly indep.) - designed or learned

Can be non-orthogonal:
$-\mathbf{r}_{k} \cdot \mathbf{r}_{l} \equiv \operatorname{sim}\left(\mathbf{r}_{k}, \mathbf{r}_{l}\right) \neq 0$

- interaction of $\mathbf{r}_{k} \& \mathbf{r}_{k}$
- generalization

Vectorial encoding of symbolic structure

TYPE: Decompose structure into roles $\left\{r_{k}\right\}$
Approach 1: Absolute position
[Approach 2: Contextual ($\sim n$-gram)]
Each r_{k} is assigned a vector encoding $\mathbf{r}_{k} \in R$ (linearly indep.)
_ designed or learned

INSTANCE: Specific fillers for roles

Let $\mathbf{f}_{k} \in F$ (linearly indep.) be the label in role r_{k}
$-\mathbf{f}_{k}$ may be a vector encoding of a symbol $\mathrm{f}_{k} \in A$
— designed or learned
ENCODING: $\mathbf{v}=\sum_{k} \mathbf{f}_{k} \otimes \mathbf{r}_{k}$

Can be recursive:

$$
\forall x \in\{0,1\}^{*}
$$

$$
\mathbf{r}_{0 x}=\mathbf{r}_{0} \otimes \mathbf{r}_{x}
$$

$$
R=\oplus_{d} R^{(d)}
$$

$$
\mathbf{s}=\mathbf{p} \otimes \mathbf{r}_{0}+\mathbf{q} \otimes \mathbf{r}_{1}
$$

$$
\Rightarrow \text { exact computation of }
$$ recursive functions

Size: linear in number of roles
Tensor Product Representations (TPRs: 1990)

Summary: TPRs

TYPE: Decompose structure into roles $\left\{r_{k}\right\}$
Each r_{k} is assigned a vector encoding $\mathbf{r}_{k} \in R$ (linearly indep.)
INSTANCE: Specific fillers for roles
Let $\mathbf{f}_{k} \in F$ (linearly indep.) be the label in role r_{k}
$-\mathbf{f}_{k}$ may be a vector encoding of a symbol $\mathbf{f}_{k} \in A$
ENCODING: $\mathbf{v}=\sum_{k} \mathbf{f}_{k} \otimes \mathbf{r}_{k}$

> N.B.: Turns out to have important (indirect) implications for grammatical theory

Computability theory over TPRs

What symbolic functions can be computed over TPRs using neural computation?

The functions in the following classes are computable in a linear neural network:
$\mathcal{B}=$ base of in-place symbol mappings
$\mathcal{C}=$ closure under composition of [tree-manipulating primitives $\cup \mathcal{B}$]
$\mathcal{P} \sim$ "primitive recursive"

```
'Primitive recursive':
\(\mathcal{C} \subset \mathcal{P}\)
\(g, h \in \mathcal{P} \Rightarrow f \in \mathcal{P}\) when
\(f(s)= \begin{cases}g(s) & \text { if atom (s) }\end{cases}\)
    \(h\left(f\left(\mathrm{ex}_{0}(s)\right), f\left(\mathrm{ex}_{1}(s)\right)\right) \quad\) otherwise
```


Decoding TPRs

INSTANCE v: Inner product

$$
\mathbf{f}_{k}=\mathbf{v} \cdot \mathbf{r}_{k}^{+} \quad-\text { given }\left\{\mathbf{r}_{k}\right\}
$$

SAMPLE $\left\{\mathbf{v}^{(\alpha)}\right\}$: Generative model

Hypothesis: $\left\{\mathbf{v}^{(\alpha)}\right\}$ is a collection of TPRs, each encoding an instance of a symbol structure of a single type

$$
\mathbf{v}^{(\alpha)}=\sum_{k} \mathbf{f}_{k}^{(\alpha)} \otimes \mathbf{r}_{k} \quad-\text { where } \mathbf{f}_{k}{ }^{(\alpha)} \text { encodes a symbol } \mathrm{f}_{k}^{(\alpha)}
$$

Learning algorithms: derived from generative model
TYPE: What are $\left\{\mathbf{r}_{k}\right\}$ and $\left\{\mathbf{f}_{k}\right\}$?
INSTANCE: For a given α,
which symbol $\mathrm{f}_{k}{ }^{(\alpha)} \in A$ fills each role r_{k} ?

APPLICATION: Decoding neuroimages of combinatorial stimuli (e.g., sentences, words). Instance bindings $\left\{\mathrm{f}_{k}{ }^{(\alpha)} / r_{k}\right\}$ of stimuli are known, so only need learn the TYPE encoding

Vectorial encoding of symbolic structure

TYPE: Decompose structure into roles $\left\{r_{k}\right\}$
Approach 1: Absolute position
Approach 2: Contextual ($\sim n$-gram)
Each r_{k} is assigned a vector encoding $\mathbf{r}_{k} \in R$ (linearly indep.) - designed or learned

INSTANCE: Specific fillers for roles
Let $\mathbf{f}_{k} \in F$ (linearly indep.) be the label in role r_{k}
$-\mathbf{f}_{k}$ may be a vector encoding of a symbol $\mathrm{f}_{k} \in A$

- designed or learned

ENCODING: $\mathbf{v}=\sum_{k} \mathbf{f}_{k} \otimes \mathbf{r}_{k}$

$$
\mathrm{R}(\overline{\underline{\Psi}}, \mathrm{Y})
$$

If X fills this role, vector encoding is: $\mathbf{X} \otimes(\mathbf{R} \otimes \mathbf{Y})$

$$
\cong \mathbf{R} \otimes \mathbf{X} \otimes \mathbf{Y}
$$

(used in cognitive models)

Approach 1: [filler] \otimes [position]
Approach 2: $\left[\right.$ filler $\left.{ }_{1}\right] \otimes\left[\right.$ filler $\left.{ }_{2}\right]$

Few leaders are admired by George Bush \qquad admire(George Bush, few leaders)

$$
\begin{aligned}
& f(s)=\operatorname{cons}\left(e x_{1}\left(e x_{0}\left(e x_{1}(s)\right)\right),\right. \\
& \left.\operatorname{cons}\left(\mathrm{ex}_{1}\left(\mathrm{ex}_{1}\left(\mathrm{ex}_{1}(\mathrm{~s})\right)\right), \mathrm{ex}_{0}(\mathrm{~s})\right)\right)
\end{aligned}
$$

