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Figure 1: An example tree with a simple Recursive Neural Network: The same weight matrix is
replicated and used to compute all non-leaf node representations. Leaf nodes are n-dimensional
vector representations of words.

We first describe recursive neural networks and how they were used in previous approaches. We
explain how they can be modified to jointly learn representations and predict structure. We then
define the optimization objective and draw connections to structure prediction. Lastly, we show
possible extensions for joint learning of the parser and category classifiers for phrases in the tree.

2.1 Recursive Neural Networks

Unlike standard neural networks, recursive neural networks (RNNs) are able to process structured
inputs by repeatedly applying the same neural network at each node of a directed acyclic graph
(DAG). In the past they have only been used in settings where another (often symbolic) component
was first used to create directed acyclic graphs. These DAGs were subsequently given as input to the
RNN. In such a setting, each non-leaf node of the DAG is associated with the same neural network.
Fig.1 shows an example of a DAG which is a binary tree. In other words, all network replications
share the same weights. The inputs to all these replicated feedforward networks are either given by
using the children’s labels to look up the associated representation or by their previously computed
representation.

While in principle n-ary DAGS can be used as input to the RNN, we now focus on binary trees for
ease of exposition.3 Fig. 1 shows an instance of a RNN applied to a given binary tree. Assume we
have an input of vectors (x1, . . . , xn) each of which has the same dimensionality xi ∈ Rn. In the
original formulation these were one-on vectors [GK96]. Assume we are also given a binary tree in
the form of branching triplets (p → c1c2). Each such triplet denotes that a parent node p has two
children and each ck can be either an input xi or a non-terminal node in the tree. For the example
in Fig.1, we would get the triples ((y1 → x3x4), (y2 → x2y1), (y1 → x1y2)). Note that in order
to replicate the neural network and compute node representations in a bottom up fashion, the parent
must have the same dimensionality as each of its children. Given this tree structure, we can now
compute activations for each node from the bottom up by

p = tanh(W [c1; c2] + b), (1)

where c1, c2, p ∈ Rn×1, the term [c1; c2] denotes the concatenation of the two child column vectors
resulting in a R2n×1 vector and hence W ∈ Rn×2n. At the top one can then stack some classification
or regression layer.

2.2 Recursive Neural Networks for Structure Prediction

We now extend RNNs to construct the tree in a bottom-up fashion. We first compute the input to
the parser in a similar way as [CW08]. Assume we are given a list of words. The input vectors
(x1, . . . , xn) come from a look-up table of dimensionality L ∈ Rn×|V |, were |V | is the size of the
vocabulary. Each word in the input sequence has an associated index k into this table. Mathemati-
cally, the look-up can be seen as a simple projection layer where we use a binary vector b which is

3Focusing on binary trees will also allow us to develop efficient (cubic) dynamic programming algorithms
for training and testing.
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A single vector encodes (i) all the (vectorial) labels
and (ii) the (discrete) structure in which they reside

Cognitive motivation:
vector ~ neural state
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(TPRs: 1990)

Size: linear in number of roles

Can be recursive:

∀x ∈ {0, 1}*

s = p ⊗ r0 + q ⊗ r1
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What symbolic functions can
be computed over TPRs using
neural computation?

The functions in the following classes are
computable in a linear neural network:

B = base of in-place symbol mappings
C = closure under composition of

[ tree-manipulating primitives∪ B ]
P ~ “primitive recursive”
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