Grammatical Theory with Gradient Symbol Structures

The GSC Research Group

Paul Smolensky	Géraldine Legendre
Matt Goldrick	Colin Wilson
Kyle Rawlins	Ben Van Durme
Akira Omaki	Paul Tupper
Don Mathis	Pyeong-Whan Cho
Laurel Brehm	Nick Becker
Drew Reisinger	Emily Atkinson
Matthias Lalisse	Eric Rosen
Belinda Adam	

Context of the work

Problem: crisis of cognitive architecture. Unify symbolic \& neural-network (NN) computation
Proposal: Gradient Symbolic Computation (GSC), a cognitive architecture

- Representation: symbol structures as vectors-Tensor Product Representations (TPRs)
- Knowledge: weighted constraints--probabilistic Harmonic Grammars (HGs)
- Processing:
(1) (Multi-)linear feed-forward NNs
(2) Stochastic feed-back (higher-order) NNs

Smolensky, Goldrick \& Mathis 2014 Cognitive Science
Smolensky \& Legendre 2006 The Harmonic Mind MIT Press

Context of the work

Problem: crisis of cognitive architecture. Unify symbolic \& neural-network (NN) computation
Proposal: Gradient Symbolic Computation (GSC), a cognitive architecture

- Representation: symbol structures as vectors-Tensor Product Representations (TPRs)
- Knowledge: weighted constraints--probabilistic Harmonic Grammars (HGs)
- Processing:
(1) (Multi-)linear feed-forward NNs
(2) Stochastic feed-back (higher-order) NNs

Tests:

- symbolic side
- computation
- (1) can compute: ("primitive") recursive functions, β-reduction, tree adjoining, inference
- (2) can specify/asymptotically compute: formal languages (type 0)
> linguistic theory: HG/OT work in phonology, ..., pragmatics
- NN side
> computation
t theory: stochastic convergence to global optima of Harmony
\uparrow NLP applications (MS): question answering, semantic parsing (related: vector semantics etc.)
> cognitive neuroscience: stay tuned (limited extant evidence)
- Together: (currently) psycholinguistics of sentence production \& comprehension

Prediction: blended, gradient symbol structures play an important role in cognition

- NNs: phonetics, psycholinguistics: interaction of gradience \& structure-sensitivity
- symbolic level, phonology: gradience in lexical representations \& French liaison

Context of the work

Problem: crisis of cognitive architecture. Unify symbolic \& neural-network (NN) computation
Proposal: Gradient Symbolic Computation (GSC), a cognitive architecture

Why go beyond classical symbol structures in grammatical theory?

Fundamental issue: Symbolic analyses in linguistics often offer tremendous insight, but typically they don't quite work.

Hypothesis: Blended, gradient symbol structures can help resolve long-standing impasses in linguistic theory.

Problem: Competing analyses posit structures A and B to account for X
Proposal: X actually arises from a gradient blend of structures A and B
Today: $\quad X=$ French liaison (\& elision); Cs (\& Vs) that \sim; e.g., peti t ami \sim peti copain $\mathrm{A}=$ underlyingly, petit is /pøti $\mathbb{T} /$ with deficient final t; ami is /ami/ B = underlyingly, petit is /pøti/; ami is \{/tami/ (\sim /zami/, /nami/, /ami/\}

- Together: (currently) psycholinguistics of sentence production \& com Prediction: blended, gradient symbol structures play an important role
- NNs: phonetics, psycholinguistics: interaction of gradience \& structur
- symbolic level, phonology: gradience in lexical representations \& French liaiso

Context of the work

Problem: crisis of cognitive architecture. Unify symbolic \& neural-network (NN) computation Proposal: Gradient Symbolic Computation (GSC), a cognitive architecture

Why go beyond classical symbol structures in grammatical theory?
Fundamental issue: Symbolic analyses in linguistics often offer tremendous insight, but typically they don't quite work.

Hypothesis: Blended, gradient symbol structures can help resolve long-standing impasses in linguistic theory.

Problem: Competing analyses posit structures A and B to account for X Proposal: X actually arises from a gradient blend of structures A and B

Today: $\quad \mathrm{X}=$ French liaison (\& elision); Cs (\& Vs) th|t \sim Ø; e.g., peti t ami \sim peti copain A = underlyingly, petit is /petiT// with defici $\mathrm{B}=$ underlyingly, petit is /poti/; ami is $\{/$ tam
nt final t; ami is /ami/ (~/zami/, /nami/, /ami/\}

See also Hankamer, Jorge. 1977. Multiple Analyses. In (harles Li (ed.) Mechanisms of Syntactic Change, pp. 583-607. University c Texas Press.
"we must give up the assumption that two or more conflictin) analyses cannot be simultaneously correct for a given phenomenon" (pp. 583-4)
"such constructions have both analyses at once (in the conjunctive sense)" (p. 592)

Goals of the work

Show how Gradient Symbolic Representations (GSRs)

- enable enlightening accounts of many of the phenomena that have been claimed to occur in the rich scope of liaison
- putting aside the many divergent views on the actual empirical status of these alleged phenomena
The theoretical divergences in this field illustrate well how symbolic representations don't quite work.
- Can GSC help resolve these disputes?

Talk goal: show what GSRs can do in the analysis of liaison.
A theoretical exploration - not an empirical argument!

- The facts are much too murky for me to even attempt a definitive empirical argument (but stay tuned).
- Also, it takes considerable theoretical exploration of a new framework before it's appropriate to seek empirical validation.

Inspiration

Dowty sketch re: structural ambivalence (PP complement vs. adjunct)

Dowty, David. 2003. The Dual Analysis of Adjuncts/Complements in
Categorial Grammar. In Ewald Lang, Claudia Maienborn, Cathrine Fabricius-Hansen, eds., Modifing Adjuncts. pp. 33-66. Mouton de Gruyter.

Inspiration

Dowty sketch re: structural ambivalence (PP complement vs. adjunct)

- children form an initial simple, maximally general, analysis
> adjuncts: compositional semantics
- adults end up with a more complex, specialized analysis
> complements: idiosyncratic semantics
but:
> general analysis persists in adulthood
> co-exists with more complex analysis
> the two blend and function jointly
"in some subtle psychological way, in on-line processing-though in a way that only connectionism or some other other future theories of the psychology of language can explain." [antepenultimate paragraph, yellow added]

Inspiration

Dowty sketch re: structural ambivalence (PP complement vs. adjunct)

- children form an initial simple, maximally general, analysis
> adjuncts: compositional semantics
- adults end up with a more complex, specialized analysis
> complements: idiosyncratic semantics
but:
> general analysis persists in adulthood
> co-exists with more complex analysis
> the two blend and function jointly
Here, formalize the adult blend, speculate about acquisition [skip?]
- liaison in French
> ultimately involves prosody [skip?]

Outline

(1) Gradient Symbolic Computation in grammar: Nano-intro
(2) The adult blend: A gradient grammar of French liaison
(A) The phonological phenomenon
(B) GSC analysis: Idea
(C) GSC analysis: Formal account
(3) Acquisition: Speculations on formalizing Dowty's sketch [skip (1)?]
(4) Prosody: Tentative suggestions [skip (6)?]
(5) Summary

Gradient Symbolic Computation in grammar

Nano-intro

(1) Informal introduction to GSC

Examples of Gradient Symbolic Representations (GSRs)

(1) Informal introduction to GSC

Examples of Gradient Symbolic Representations (GSRs)

Left child role filled
by blend of symbols

Phonology: Elements
change but stay in place

(1) Informal introduction to GSC

Examples of Gradient Symbolic Representations (GSRs)

> A in role blend:
> $0.7 r_{\text {left }}+0.4 r_{\text {right }}$

> Syntax etc.: Elements
> change their place
> (or occupy multiple roles)

(1) Informal introduction to GSC

Examples of Gradient Symbolic Representations (GSRs)

$$
\begin{gathered}
\text { petit ami } \\
{\left[{ }^{\mathrm{M}} \mathrm{p} \not \mathrm{i}(\lambda \cdot \mathrm{t})\right]} \\
{\left[{ }^{\mathrm{M}}(\tau \cdot \mathrm{t}+\zeta \cdot \mathrm{z}+\mathrm{v} \cdot \mathrm{n}) \mathrm{ami}\right]}
\end{gathered}
$$

A state in GSC is a probability distribution over GSRs

Computation with GS Representations

GSRs are implemented as distributed activity patterns/vectors

- this formalizes 'blend of symbols', 'blend of roles'

$r_{\text {left }}$ hosts a filler blend: 0.7 A+0.2B

Computation with GS Representations

GSRs are implemented as distributed activity patterns/vectors

- this formalizes 'blend of symbols', 'blend of roles'

Dynamics: stochastic optimization
Here do not deal with dynamics, but exploit the fact that the outcome of the dynamics is
(in the competence-theoretic approximation)

- a representation that maximizes well-formedness: 'Harmony' H
- $H(r)$ is the (weighted) sum of violations, by representation r, of constraints \mathbb{C}_{k}
- each \mathbb{C}_{k} has a numerical weight (H is a Harmonic Grammar)

Computation with GS Representations

GSRs are implemented as distributed activity patterns/vectors

- this formalizes 'blend of symbols', 'blend of roles'

Dynamics: stochastic optimization
Here do not outcome C (in the but gradient representations are new to GSC

- a repres here, understanding the HG analysis $\quad \mathfrak{r y} y^{\prime} H$
- $H(r)$ is the (weighted) sum of violations, by repr sentation r, of constraints \mathbb{C}_{k}
- each \mathbb{C}_{k} has a numerical weight (H is a Harmonic Grammar)
- the activity-vector implementation determines how $H(r)$ is computed when r is a GSR

The adult blend

(A) The phonological phenomenon

(B) GSC analysis: Idea
(C) GSC analysis: Formal account

A gradient grammar of French liaison

(A) The phonological phenomenon: Core

Latent consonants in French (liaison)

Core phenomena Universal σ well-formedness: OnSET, NOCODA

no coda, onset		coda, onset	no coda, no onset
.pø.ti.ta.mi.	.pø.ti.ko.p	.pø.tit..ko.pin.	.pø.ti.e.
$[\mathrm{t}]$	no. $[\mathrm{t}]$	$[\mathrm{t}]$	no $[\mathrm{t}]$

petit ami vs. petit copain vs. petite copine vs. petit héro
$[t]:$ only -V everywhere not $-\mathbb{V}$ (h-aspiré)
with peti (t), final /t/ only surfaces 'when needed for syllable onset'
but before héro, no /t/ despite lacking onset (? typically absent) with petite, final /t/ always surfaces, even in coda

What is the (t) vs. t distinction in underlying (stored lexical) form?

- 'liaison' \mathcal{L} [petit] vs. 'fixed' [petite] \mathcal{F} final consonants

(A) The phonological phenomenon: Core

Latent consonants in French (liaison)
Core mappings
(1) $\mathrm{v} \mathscr{L}+\mathrm{V} \rightarrow \mathrm{v} \cdot \mathscr{L} \mathrm{V}$

$$
\text { (2) } \mathrm{v} \mathscr{L}+\mathrm{c} \rightarrow \mathrm{v} . \mathrm{c}
$$

$$
\text { (3) } \mathrm{v} \mathscr{L}+\mathbb{V} \rightarrow \mathrm{v} \cdot \mathbb{V}
$$

$$
\text { (4) } \mathrm{v} \mathrm{\mathcal{F}}+\mathrm{c} \rightarrow \mathrm{v} \mathcal{F} . \mathrm{c}
$$

$$
\begin{array}{ll}
\text { peti }(t)+\text { ami } & \rightarrow \text {.pø.ti.ta.mi. } \\
\text { peti }(t)+\text { copain } & \rightarrow \text {.pø.ti.ko.p } . \\
\text { peti }(t)+\text { Héro } & \rightarrow \text {.pø.ti.e.бо. } \\
\text { petite }+ \text { copine } & \rightarrow \text {.pø.tit.ko.pin. }
\end{array}
$$

petit ami vs. petit copain vs. petite copine vs. petit héro

What is the (t) vs. t distinction in underlying (stored lexical) form?

- 'liaison' \mathscr{L} vs. 'fixed' \mathcal{F} final consonants

(A) The phonological phenomenon: Core

Latent consonants in French (liaison)

What is the (t) vs. t distinction in underlying (stored lexical) form?

- ‘liaison' \mathscr{L} vs. 'fixed' \mathcal{F} final consonants

Proposed GSC answer: activity level
\mathcal{F} is a fully active C , but \mathscr{L} is activity-deficient - 'weak'
\mathscr{L} can surface only if it is provided with extra activity
\mathscr{L} is exactly like \mathcal{F} in content (a standard C) - but weaker in activity.

(A) The phonological phenomenon

Latent consonants in French (liaison)

So far, following orthography, we've assumed a liaison C is final in the word it follows

- the $\hat{\mathbf{W}}_{1} \mathcal{L}$ (or final-L) Analysis
> also take to include syllabification-driven alternation
But a number of phonologists reject this theory. some may find this inelegant

They favor an analysis in which a liaison C is initial in the word it precedes
> consistent with syllabification
> requires lexical entries ami, tami, zami, nami, ...: allomorph selection is driven by the preceding word

- the $\mathscr{L} \hat{\mathbf{W}}_{2}$ (or \mathscr{L}-initial) Analysis

(A) The phonological phenomenon

Latent consonants in French (liaison)

So far, following orthography, we've assumed a liaison C is final in the word it follows

- the $\hat{\mathbf{W}}_{1} \mathcal{L}$ (or final-L) Analysis
> also take to include syllabification-driven alternation
But a number of phonologists reject this theory.
Why? ['external evidence']
They favor an analysis in which a liaison C is initial in the word it precedes
> consistent with syllabification
- requires lexical entries ami, tami, zami, nami, ...: allomorph selection is driven by the preceding word
- the $\mathscr{L} \hat{\mathbf{W}}_{2}$ (or \mathscr{L}-initial) Analysis

(A) The phonological phenomenon: Complications

 need at least a 3-way contrastTrouble for strictly syllabification-drive distribution of \mathscr{L} :
(5) Phrase-final \mathcal{L}. In a few words: $\operatorname{dix}\|\rightarrow \operatorname{dis}\|($ but deux $\| \rightarrow$ dø\|)
(6) Coda \mathscr{L} (1). Can get $\mathbf{v} \mathscr{L} . \mathrm{v}$ instead of $\mathrm{v} . \mathscr{L} \mathrm{V}$ (but never *v $\mathcal{L} . \mathrm{c})$
(7) h-aspiré onset \mathcal{F} (but not $\mathscr{L})$. Can get v. $\mathcal{F} \mathbb{V}$ (but not *v.LDV)
(8) Post-pausal $\mathscr{L} . \mathscr{L}$ can surface after a prosodic break: $\| \mathscr{L}$
(9) Frequency effect. Where optional, $p(\mathscr{L}$ surfaces $) \sim p\left(W_{2} \mid W_{1}\right)$
\ldots as if \mathscr{L} were part of the following word

Côté 2005, 2011
Tranel 1981 et seq.
(6) Encrevé 1988
(9) Ågren 1973, Bybee 2001
... so neither W_{1} nor W_{2} alone contains all lexically-specific relevant information

(A) The phonological phenomenon: Complications

Errors that are expected under the $\mathcal{L} \hat{W}_{2}$ - but not the $\hat{W}_{1} \mathcal{L}$-Analysis:
(10) Incorrect \mathscr{L} selection. When an incorrect C is substituted for \mathscr{L}, it is another liaison $\mathrm{C}: \frac{\mathrm{v} \cdot \mathscr{L}^{\prime} \mathrm{v} \text { for } \mathrm{v} . \mathscr{L}_{\mathrm{v}}}{/}$
(11) Exceptional \mathscr{L} epenthesis. When what should be V.V is illicitly repaired by C-insertion, it is a liaison $\mathrm{C}: \underline{\mathrm{v} . \mathcal{L}^{\prime} \mathrm{v} \text { for v.v }}$ //
(12) Child \mathscr{L}-as- $\mathcal{F} . \mathscr{L} \hat{\mathbf{W}}_{2}$ treated as if word $\mathcal{F} \hat{\mathbf{W}}_{2}$
$\mathscr{L} \hat{\mathbf{W}}_{2}$ Analysis: mis-sel ction of \mathbf{W}_{2} allomorph: $\mathscr{L}^{\prime} \hat{\mathbf{W}}_{2}$ pr $\mathscr{L} \hat{\mathbf{W}}_{2}$
ditto: /nami/ for /ami/
expected given $[\mathrm{Wd}=[\sigma$ heuristic for word segmentation
$\mathscr{L} \hat{W}_{2}$ Analysis: mis-selection of \mathbf{W}_{2} allomorph: $\mathscr{L}^{\prime} \hat{\mathbf{W}}_{2}$ for $\hat{\mathbf{W}}_{2}$

(A) The phonological phenomenon: Complications

Challenges for the $\mathcal{L} \hat{\mathbf{W}}_{2}$ - but not the $\hat{\mathbf{W}}_{1} \mathcal{L}$-Analysis:
(13) \mathbf{W}_{2} allomorph selection. (None required in $\hat{\mathbf{W}}_{1} \mathcal{L}$-Analysis)
(14) Coda \mathscr{L} (2). Can get vL $\mathcal{L} . \mathrm{V}$ instead of v. $\mathscr{L} \mathrm{V}-$ but never ${ }^{*} \mathrm{v} \mathcal{F} . \mathrm{V}$

Another challenge for both analyses:
(15) Gender-bending \mathcal{L}. belle copine and belle amie; beau copain but *beau ami: instead bel ami.

Proposed GSC theory appears to account for all (ns (explanation? insight?)

The adult blend

(A) The phonological phenomenon
(B) GSC analysis: Idea
(C) GSC analysis: Formal account

A gradient grammar of French liaison

(B) A GSC analysis: Idea

Latent consonants in French (liaison)

So far, following orthography, we've assumed a liaison C is final in the word it follows:

- the $\hat{\mathbf{W}}_{1} \mathscr{L}$ Analysis
> alsd take to include syllabification-driven alternation
But in childre ear After Dowty: propose that the adult state ...
blends $\hat{\mathbf{W}}_{1} \mathscr{L}$ \ldots and $\mathscr{L} \hat{\mathbf{W}}_{2}$-Analyses
Presumably e
via a bia [morpheme $=$ [syllable
That is, a liai\%on C is initial in the word that it precedes:
- the $\mathscr{L} \hat{\mathbf{W}}_{2}$ Analysis

(B) A GSC analysis: Idea

Underlying forms in $\mathrm{W}_{1}+\mathrm{W}_{2}$

```
/W1/
    = \hat{W}
    = \hat{W}
/W2/
    ... and \mathscr{L}}\mp@subsup{\hat{W}}{2}{}\mathrm{ -Analyses [activity ( }\tau,\zeta,\nu)\mathrm{ ]
    CC\hat{W}
    = \mathbb{V}\mp@subsup{\hat{W}}{2}{}
    = {L,}\mp@subsup{\hat{W}}{2}{
ami: /Lami/
where \(\mathfrak{L} \equiv(\tau \cdot t+\zeta \cdot \mathrm{z}+v \cdot \mathrm{n})\)
```


(B) A GSC analysis: Idea

Underlying forms in $\mathrm{W}_{1}+\mathrm{W}_{2}$
[for now $(\lambda, \tau, \zeta, v)$ are constants across the entire lexicon]

$$
\doteq(0.5,0.3,0.3,0.3)
$$

/W W_{1}

$$
\begin{aligned}
& =\hat{W}_{1}(\lambda \cdot \mathcal{L}) \\
& =\hat{W}_{1}(1 \cdot \mathcal{F})
\end{aligned}
$$


```
petit ami:
```

/pøti $(\lambda \cdot t)(\tau \cdot t+\zeta \cdot z+v \cdot n)$ ami/ \rightarrow pø.ti.ta.mi
(τ in $/ \mathrm{W}_{2} /=\mathfrak{L} \hat{W}_{2}$ gives $/ \mathrm{t} /$ the extra activity needed to bring λ up to the threshold level required to surface)

/ W_{2} /

$=C \hat{W}_{2}$
$=\mathbb{V} \hat{W}_{2}$
$=\mathfrak{L} \hat{W}_{2}$

ami: /Lami/

where $\mathfrak{L} \equiv(\tau \cdot t+\zeta \cdot z+v \cdot n)$

(B) A GSC analysis: Idea

Underlying forms in $\mathrm{W}_{1}+\mathrm{W}_{2}$
[for now $(\lambda, \tau, \zeta, v)$ are constants across the entire lexicon]

$$
\doteq(0.5,0.3,0.3,0.3)
$$

/ W_{1} /

$$
\begin{aligned}
& =\hat{W}_{1}(\lambda \cdot \mathscr{L}) \\
& =\hat{W}_{1}(1 \cdot \mathcal{F})
\end{aligned}
$$

petit copain: /pøti($\lambda \cdot \underline{\mathbf{t}})$ kop $\tilde{\varepsilon} /$
\rightarrow.pø.ti.ko.p $\tilde{\varepsilon}$.
$\left(/ \mathrm{W}_{2} /=\mathrm{C} \hat{W}_{2}\right.$ lacks the extra activity for /t/ needed to bring λ up to the threshold level required to surface)

/ W_{2} /

$$
=C \hat{W}_{2}
$$

$$
=\mathbb{V} \hat{W}_{2}
$$

$$
=\mathfrak{L} \hat{W}_{2}
$$

	petit copain:
$\text { petit: /pøti }(\lambda \cdot \mathrm{t}) \text { / }$	/pøti($\lambda \cdot \mathbf{t})$ kop $\tilde{\varepsilon} /$ \rightarrow.pø.ti.ko.pz̃.
juste: /3ys(1-t)/	(/ $\mathrm{W}_{2} /=\mathrm{C} \hat{W}_{2}$ lacks the extra
	activity for $/ \mathrm{t} /$ needed to bring λ up to the threshold level required to surface)
copain: /kop $\tilde{\varepsilon} /$	
Héro: /еко/	(h-aspiré)
ami: /Lami/	where $\mathfrak{L} \equiv(\tau \cdot t+\zeta \cdot \mathrm{z}+\mathrm{v} \cdot \mathrm{n})$

(B) A GSC analysis: Idea

Underlying forms in $\mathrm{W}_{1}+\mathrm{W}_{2}$
[for now $(\lambda, \tau, \zeta, v)$ are constants across the entire lexicon]

$$
\doteq(0.5,0.3,0.3,0.3)
$$

/W W_{1}

$$
\begin{aligned}
& =\hat{W}_{1}(\lambda \cdot \mathscr{L}) \\
& =\hat{W}_{1}(1 \cdot \mathcal{F})
\end{aligned}
$$

$$
\begin{aligned}
& / W_{2} / \\
& =\mathrm{C} \hat{W}_{2} \\
& =\mathbb{V} \hat{W}_{2} \\
& =\mathfrak{L} \hat{W}_{2}
\end{aligned}
$$

ami: $/ \mathfrak{L} \mathrm{ami} / \quad$ where $\mathfrak{L} \equiv(\tau \cdot t+\zeta \cdot \mathrm{z}+v \cdot n)$

petit héro:

 $/$ pøti $(\lambda \cdot \mathbf{t})$ еко/\rightarrow.pø.ti.е.ко.
(/ $\mathrm{W}_{2} /=\mathbb{V} \hat{\mathrm{W}}_{2}$ lacks the extra activity for $/ \mathrm{t} /$ needed to bring λ up to the threshold level required to surface)

Héro: /еко/ (h-aspiré)

The adult blend

(A) The phonological phenomenon
(B) GSC analysis: Idea
(C) GSC analysis: Formal account

A gradient grammar of French liaison

(C) A GSC analysis: Formal account

Core phenomena:

$$
\text { (1) } \mathrm{v} \mathscr{L}+\mathrm{v} \rightarrow \mathrm{v} . \mathscr{L}_{\mathrm{v}} \quad \text { peti }(t)+a m i \quad \rightarrow \text {.pø.ti.ta.mi. }
$$

Environment: $\mathrm{v} \underline{\mathbf{C}}$; output: v.CV or v.V

$$
[\mathrm{V} \equiv \mathfrak{L} \mathrm{v}]
$$

$$
\operatorname{peti}(t) \text { ami } \quad\left[{ }^{\mathrm{m}} \operatorname{pgti}\left(\lambda \cdot \mathrm{t}_{1}\right)\right]\left[{ }^{\mathrm{m}}\left(\cdot \cdot \cdot_{2}+\zeta \cdot \mathrm{z}_{3}+v \cdot \mathrm{n}_{4}\right) \mathrm{ami}\right]
$$

$$
\begin{array}{llll}
0.5 & 0.3 & 0.3 & 0.3 \\
\hline
\end{array}
$$

Harmonic Grammar (Legendre, Miyata \& Smolensky 1990, Pater 2009 et seq.)

$$
-10
$$

	[${ }^{(}\left(\tau \cdot t_{2}+\zeta \cdot z_{3}+v \cdot n_{4}\right) \mathrm{ami]}$	DEP
a	.pø.ti.a.mi.	
b	.pø.ti.t ${ }_{12}$ a.mi.	$\begin{gathered} 1-(\lambda+\tau) \\ 0.2 \end{gathered}$
c	pø.ti.t ${ }_{1}$ a.mi.	$\begin{gathered} 1-\lambda \\ 0.5 \end{gathered}$

UNIF
*

(C) A GSC analysis: Formal account

Core phenomena:

$$
\text { (1) } \mathrm{v} \mathscr{L}+\mathrm{v} \rightarrow \mathrm{v} \cdot \mathscr{L} \mathrm{v} \quad \operatorname{peti}(t)+a m i \quad \rightarrow \text {.pø.ti.ta.mi. }
$$

Environment: $\mathrm{v} \underline{\mathrm{C}}$; output: v.CV or v.V

$$
[\mathrm{V} \equiv \mathfrak{L} \mathrm{v}]
$$

peti (t) ami $\left.\quad\left[{ }^{m} p \not p t i\left(\lambda \cdot \mathrm{t}_{1}\right)\right]\left[{ }^{\mathrm{M}}{ }^{\tau} \cdot \mathrm{t}_{2}+\zeta \cdot \mathrm{z}_{3}+v \cdot \mathrm{n}_{4}\right) \mathrm{ami}\right]$
$\begin{array}{llll}0.5 & 0.3 & 0.3 & 0.3\end{array}$
Numbers are not derived a priori; they are fit to the data

$$
-10
$$

$\left[{ }^{\text {ppeti }}\left(\lambda \cdot \mathrm{t}_{1}\right)\right]\left[{ }^{m}\left(\tau \cdot \mathrm{t}_{2}+\zeta \cdot z_{3}+v \cdot n_{4}\right)\right.$ ami $]$		DEP
a	.pø.ti.a.mi.	
b	.pø.ti.t 1_{12} a.mi.	$\begin{gathered} 1-(\lambda+\tau) \\ 0.2 \end{gathered}$
c	.pø.ti.t ${ }_{1}$ a.mi.	$\begin{gathered} 1-\lambda \\ 0.5 \end{gathered}$

UNIF
*

(C) A GSC analysis: Formal account

Core phenomena:

$$
\text { (1) } \mathrm{v} \mathscr{L}+\mathrm{v} \rightarrow \mathrm{v} \cdot \mathscr{L}_{\mathrm{v}} \quad \operatorname{peti}(t)+a m i \quad \rightarrow \text {.pø.ti.ta.mi. }
$$

Environment: $\mathrm{v} \underline{\mathrm{C}}$; output: v.CV or v.V $\quad[\mathrm{V} \equiv \mathfrak{L} \mathrm{v}]$
peti (t) ami $\left.\quad\left[{ }^{m} p \not p t i\left(\lambda \cdot \mathrm{t}_{1}\right)\right]\left[{ }^{\mathrm{M}} \tau \cdot \mathrm{t}_{2}+\zeta \cdot \mathrm{z}_{3}+v \cdot \mathrm{n}_{4}\right) \mathrm{ami}\right]$ $\begin{array}{llll}0.5 & 0.3 & 0.3 & 0.3\end{array}$
All gradient versions of standard constraints from OT phonology

$$
-10
$$

$\left[{ }^{\text {mppti }}\left(\lambda \cdot \mathrm{t}_{1}\right)\right]\left[{ }^{\mathrm{m}}\left(\tau \cdot \mathrm{t}_{2}+\zeta \cdot \mathrm{z}_{3}+\mathrm{v} \cdot \mathrm{n}_{4}\right) \mathrm{ami]}\right]$		DEP
a	.pø.ti.a.mi.	
b	.pø.ti.t 1_{12} a.mi.	$\begin{gathered} 1-(\lambda+\tau) \\ 0.2 \end{gathered}$
c	.pø.ti.t ${ }_{1}$ a.mi.	$\begin{gathered} 1-\lambda \\ 0.5 \end{gathered}$

UNIF
*

(C) A GSC analysis: Formal account

Core phenomena:

$$
\text { (1) } \mathrm{v} \mathscr{L}+\mathrm{v} \rightarrow \mathrm{v} \cdot \mathscr{L} \mathrm{v} \quad \operatorname{peti}(t)+a m i \quad \rightarrow \text {.pø.ti.ta.mi. }
$$

Environment: $\mathrm{v} \underline{\mathbf{C}}$; output: v.CV or v.V

$$
[\mathrm{V} \equiv \mathfrak{L} \mathrm{v}]
$$

peti (t) ami $\left.\quad\left[{ }^{\mathrm{M}} \mathrm{pgti}\left(\lambda \cdot \mathrm{t}_{1}\right)\right]\left[{ }^{\mathrm{m}}{ }^{\tau} \cdot \mathrm{t}_{2}+\zeta \cdot \mathrm{Z}_{3}+\mathrm{v} \cdot \mathrm{n}_{4}\right) \mathrm{ami}\right]$
$\begin{array}{llll}0.5 & 0.3 & 0.3 & 0.3\end{array}$
ALIGN([m, [σ) [positive]

		$\begin{aligned} & -10 \\ & \text { DEP } \end{aligned}$			
		MAX	Align		
a	.pø.ti.a.mi.				
b	.pø.ti.til ${ }_{12}$ a.mi.	$1-(\lambda+\tau)$ 0.2	$\begin{gathered} \hline \lambda+\tau \\ 0.8 \end{gathered}$	1	
c	.pø.ti.t, ${ }^{\text {a a mi. }}$	$\begin{gathered} \hline 1-\lambda \\ 0.5 \end{gathered}$	$\begin{gathered} \hline \lambda \\ 0.5 \end{gathered}$		

UNIF
*

(C) A GSC analysis: Formal account

Core phenomena:

$$
\text { (1) } \mathrm{v} \mathscr{L}+\mathrm{v} \rightarrow \mathrm{v} . \mathscr{L} \mathrm{v} \quad \text { peti }(t)+a m i \quad \rightarrow \text {.pø.ti.ta.mi. }
$$

Environment: v $\underline{C V}$; output: v.CV or v.V

$$
[\mathrm{V} \equiv \mathfrak{L} \mathrm{v}]
$$

$$
\operatorname{peti}(t) \text { ami } \quad\left[{ }^{\mathrm{m}} \mathrm{pgti}\left(\lambda \cdot \mathrm{t}_{1}\right)\right]\left[{ }^{\mathrm{m}}\left(\cdot \cdot t_{2}+\zeta \cdot \mathrm{z}_{3}+v \cdot \mathrm{n}_{4}\right) \mathrm{ami}\right]
$$

W_{2} allomorph selection. It's automatic: only the matching \mathscr{L} can coalesce \Rightarrow surface; next case shows coalescence is necessary

$\underline{\left[" p r t i\left(\lambda \cdot t_{1}\right)\right]\left[{ }^{(}\left(\tau \cdot t_{2}+\zeta \cdot z_{3}+v \cdot n_{4}\right) \text { ami] }\right]}$		-10 2		-0.7			
		DEP	Max	Align	OnSET	UNIF	H
a	.pø.ti.a.mi.				1		-0.9
b	.pø.ti.t ${ }_{12}$ a.mi. ${ }^{\text {a }}$	$\begin{gathered} \hline 1-(\lambda+\tau) \\ 0.2 \end{gathered}$	$\begin{gathered} \overline{\lambda+\tau} \\ 0.8 \end{gathered}$	1		\pm	-0.1
c	.pø.ti.t ${ }_{1}$ a.mi.	$1-\lambda$ 0.5	λ 0.5				-4

(C) A GSC analysis: Formal account

$$
\begin{array}{rlrl}
H(b)-H(a) & =\left[(1-\lambda-\tau) D+(\lambda+\tau) M+U+A^{\mathrm{L}}\right]-[O] & & \text { same procedure for } \\
& =(\lambda+\tau)[M-D]+D+U+A^{\mathrm{L}}-O & & \text { all elements \& } \\
& >0 & & \text { environments gives } \\
\text { iff }(\lambda+\tau) & >-\left[D+U+A^{\mathrm{L}}-O\right] /[M-D] \equiv \theta(\mathrm{vCV}) & & \text { corresponding } \theta \text { : } \\
& =-[-10-0.7+1-(-0.9)] /[2-(-10)] & & \text { activity of gradient } \\
& =0.73 & & \text { segments must }>\theta \\
\checkmark \text { since } \lambda+\tau \doteq 0.5+0.3=0.8 & & \text { to surface }
\end{array}
$$

-10
$2 \quad 1 \quad-0.9 \quad-0.7$

["ppti $\left.\left(\lambda \cdot \mathrm{t}_{1}\right)\right]\left[{ }^{\text {m }}\left(\tau \cdot \mathrm{t}_{2}+\zeta \cdot \mathrm{z}_{3}+v \cdot n_{4}\right)\right.$ ami]		DEP	MAX	Align	OnSET	UNIF	H
a	.pø.ti.a.mi.				1		-0.9
b	.pø.ti.t ${ }_{12}$ a.mi.	$\begin{gathered} 1-(\lambda+\tau) \\ 0.2 \end{gathered}$	$\begin{gathered} \overline{\lambda+\tau} \\ 0.8 \end{gathered}$	1		1	-0.1
c	.pø.ti.t ${ }_{1}$ a.mi.	$1-\lambda$ 0.5	λ 0.5				-4

(C) A GSC analysis: Formal account

Core phenomena:

$$
\text { (1) } \mathrm{v} \mathscr{L}+\mathrm{v} \rightarrow \mathrm{v} \cdot \mathscr{L} \mathrm{v} \quad \operatorname{peti}(t)+a m i \quad \rightarrow \text {.pø.ti.ta.mi. }
$$

Environment: v $\underline{\mathbf{C}}$; output: v.CV or v.V
pøtit ami $\quad\left[{ }^{\mathrm{M}} \operatorname{pøti}\left(\lambda \cdot \mathrm{t}_{1}\right)\right]\left[{ }^{\mathrm{M}}\left(\tau \cdot \mathrm{t}_{2}+\zeta \cdot \mathrm{Z}_{3}+v \cdot \mathrm{n}_{4}\right) \mathrm{ami}\right]$

$$
\boldsymbol{\theta}(\mathrm{v} \underline{\mathbf{C} V})=-\left[D+U+A^{\mathrm{L}}-O\right] /[M-D] \doteq 0.73
$$

(C) A GSC analysis: Formal account

Consider joli ami /joli $(\tau \cdot t+\zeta \cdot \mathrm{z}+\mathrm{v} \cdot \mathrm{n}) \mathrm{ami} /$
The pre- $W_{2} \mathfrak{L}$ consonants are in the same environment as the post- W_{1} consonant $\mathscr{L}=\lambda \cdot t$ for peti (t) ami.
But now the only activity for any liaison C is

$$
\begin{aligned}
\tau \doteq 0.3 & \doteq \zeta=v: \\
& <\theta(v \underline{C} V) \doteq 0.73
\end{aligned}
$$

\Rightarrow no C surfaces \checkmark

(C) A GSC analysis: Formal account

Core phenomena:
(2) $\mathrm{v} \mathscr{L}+c \rightarrow \mathrm{v} \cdot \mathrm{c}$

$$
\text { peti }(t)+\text { copain } \rightarrow \text {.pø.ti.ko.pz̃. }
$$

Environment: v——c petit copain $\quad\left[{ }^{M} p ø t i\left(\lambda \cdot t_{1}\right)\right]\left[{ }^{M} \mathrm{kop} \tilde{\varepsilon}\right]$

When does $\mathscr{L}=/ t /$ surface? I.e., when is $b>a$?
$H(b)-H(a)=\left[(1-\lambda) D+\lambda M+N+A^{\mathrm{L}}+A^{\mathrm{R}}\right]-\left[A^{\mathrm{L}}\right]$
$=\lambda[M-D]+D+N+A^{\mathrm{R}}>0$
iff $\lambda>-\left[D+N+A^{\mathrm{R}}\right] /[M-D] \equiv \boldsymbol{\theta}(\mathrm{v} \underline{\mathrm{C}} \mathrm{c})$
$\doteq-[-(10)-0.2+0.1] /[2-(-10)]=0.84$
$x \Rightarrow \mathscr{L}$ does not surface \mathcal{F} does surface \checkmark
$\begin{array}{lllll}-10 & 2 & -0.2 & 1 & 0.1\end{array}$

		DEP	MAx	NOCODA	ALIGN-L	ALIGN-R
$a \quad$.pø.ti.ko.p \tilde{H}.				1		1
$b \quad$.pø.tit ${ }_{1} \cdot$ ko.p \tilde{c}.	$1-\lambda$	λ	1	1	1	-3.2
	0.5	0.5				

(C) A GSC analysis: Formal account

Core phenomena:
(2) $\mathrm{v} \mathscr{L}+\mathrm{c} \rightarrow$ v.c \quad peti $(t)+$ copain \rightarrow.pø.ti.ko.p $\tilde{\varepsilon}$.

Environment: vCc petit copain $\left[{ }^{\mathrm{M}} \operatorname{pøti}\left(\lambda \cdot \mathrm{t}_{1}\right)\right]\left[{ }^{\mathrm{M}} \mathrm{kop} \tilde{\varepsilon}\right]$

$$
\boldsymbol{\theta}(\mathrm{v} \underline{\mathrm{C}} \mathrm{c})=-\left[D+N+A^{\mathrm{R}}\right] /[M-D] \doteq \mathbf{0 . 8 4}
$$

(C) A GSC analysis: Formal account

Core phenomena:
(1) $\mathrm{v} \mathscr{L}+\mathrm{v} \rightarrow \mathrm{v} \cdot \mathscr{L} \mathrm{v}$
peti $(t)+$ ami \rightarrow.pø.ti.ta.mi.
(2) $\mathrm{v} \mathscr{L}+\mathrm{c} \rightarrow \mathrm{v} \cdot \mathrm{c}$
peti $(t)+$ copain \rightarrow.pø.ti.ko.p ε.

Environments: v $\underline{C V}, \mathrm{v} \underline{\mathbf{C}}$

		v. C V	vC.c	
	0.73	0.84		θ
0.3, 0.3, 0.3		0.8		1 activity
τ, ζ, v	λ	$\lambda+\tau$		\mathcal{F}
.jo.li.a.mi. joli $\mathfrak{\Sigma a m i}$	\rightarrow	$\begin{aligned} & \text { pø.ti.ta.mi. } \\ \leftarrow & \text { petit } \mathfrak{L a m i} \end{aligned}$		
	pø.ti.ko.pẽ. petit copain	\rightarrow	\leftarrow	.pø.tit.ko.pin. petite copine

(C) A GSC analysis: Formal account

The analysis consists of 2 crossed dimensions:
Environments: activity threshold a segment must meet to surface

(C) A GSC analysis: Formal account

Core mappings

$$
\begin{aligned}
& \text { (1) } \mathrm{vL}+\mathrm{V} \rightarrow \mathrm{v} \cdot \mathscr{L} \mathrm{~V} \\
& \text { (2) } \mathrm{v} \mathscr{L}+\mathrm{c} \rightarrow \mathrm{v} \cdot \mathrm{C} \\
& \text { (3) } \mathrm{v} \mathscr{L}+\mathbb{V} \rightarrow \mathrm{v} \cdot \mathbb{V} \\
& \text { peti }(t)+\text { ami } \rightarrow \text {.pø.ti.ta.mi. } \\
& \text { peti }(t)+\text { copain } \rightarrow \text {.pø.ti.ko.pz̃. } \\
& \operatorname{peti}(t)+\mathbb{H e ́ r o} \rightarrow \text {.pø.ti.e.ьо. } \\
& \text { (4) } \mathrm{vF}+\mathrm{c} \rightarrow \mathrm{vF} \text {.c } \\
& \text { petite }+ \text { copine } \rightarrow \text {.pø.tit.ko.pin. }
\end{aligned}
$$

Analysis handles these 4 core patterns and nearly a dozen peripheral patterns: so far, handles all phenomena covered by both the $\hat{\mathbf{W}}_{1} \mathscr{L}$ and $\mathscr{L} \hat{\mathbf{W}}_{2}$ accounts

(C) An analysis of the GSC analysis

A less incomplete diagram of the analysis:

Environments: activity threshold a segment must meet to surface
hi freq

Festagé
tamis énorme
.ta.mi.e.no.sm.

serait âgé

Segment types: activity level

(C) An analysis of the GSC analysis

Restrictiveness

Environments: activity threshold a segment must meet to surface

- no matter the underlying activity of a segment x, if x surfaces in an environment with a threshold θ, then x must surface in any environment with a threshold $<\theta$

- no matter the threshold of an environment E, if a segment x with activation $a \leq 1$ surfaces in E, then a segment x with any activation $>a$ (and ≤ 1) must also surface in E

(3)

Acquisition

[I]

Speculations on formalizing Dowty's sketch

(3) Notes:Acquisition

Comprehension-directed optimization \&

- Align-L(Morpheme, Syllable)
\rightarrow start in free variation ami \sim tami \sim zami \sim nami
- from: joli. ami, peti.t ami, le.s amis, u.n ami

Error signal * zoli tami/ 3 oli ami \rightarrow

- weakens initial t of $t a m i$, say by 0.1 ; eventually, reduces to say $(0.7 \cdot t) a m i ;$ [assume $\theta=0.73$ as above];then
- to get peti.tami (when correctly choose /tami/)
> need "more t activity"
> increase activity of t on both sides, say by 0.05 : peti $(0.05 \cdot t)(0.75 \cdot t)$ ami
- error * 3 oli tami returns; reduce to (0.65 . t)ami
$>$ to get petit.ami need to increase again: peti $(0.1 \cdot t)(0.70 \cdot t) a m i$
gradual shift of t activity from $\underline{t a m i}$ to petit
Adult blend analysis \Rightarrow the shift does not go all the way!
(4)

Prosody

[6]

Tentative suggestions

(4) The role of prosody: Formalization

' $\left[\mathrm{W}_{1} \mathrm{~W}_{2}\right]^{\prime}$ lexical entry (input to grammar):

$$
\left[\mathrm{m} \mathbb{W}_{1}(-\phi \cdot \mathrm{m}][\mathrm{m}) \mathbb{W}_{2 \mathrm{~m}}\right]
$$

$>\mathbb{W}_{1}$ means this contributes only to inputs with a particular W_{1}; \mathbb{W}_{2} means this contributes only to inputs with a particular W_{2} or to inputs in which W_{2} belongs to a particular syntactic category \mathbb{X} \uparrow e.g., $[\mathrm{m}$ quaind $(-0.7 \cdot \mathrm{~m}][\mathrm{m}) \mathbb{N} \mathrm{m}] \quad$ 'when N^{\prime}

Call this a collocation schema
Input for quand on (va) is the blend:

$$
\begin{aligned}
& {[\mathrm{m} \text { quand } \mathrm{m}][\mathrm{m} \text { on } \mathrm{m}]+[\mathrm{m} \text { quand }(-0.7 \cdot \mathrm{~m}][\mathrm{m}) \text { on } \mathrm{m}]} \\
& \quad=[\mathrm{m} \text { quand }(0.3 \cdot \mathrm{~m}][\mathrm{m}) \text { on } \mathrm{m}]
\end{aligned}
$$

i.e. quand and on are separated by a morpheme boundary of activity $0.3 \rightarrow$ quand $[\mathrm{t}]$ on (va)

(4) The role of prosody: Formalization

The outputs from the grammar (candidates):

- contain morphological structure $=$ that of the input (containment)
- are evaluated by constraints:
*CROSS(Morph, PCat): [Morph] and (PCat) constituents cannot cross
I.e., can have neither

$$
\begin{aligned}
& {[\text { Morph }(\text { PCat } \mu \cdot \text { Morph }] \text { PCat }) \text { nor }} \\
& (\text { PCat } \mu \cdot[\text { Morph PCat }) \text { Morph }]
\end{aligned}
$$

Penalty: $\mu \cdot w^{*}$ CROSS(Morph, PCat)
which form a universal markedness hierarchy:
if PCat' is higher in the prosodic hierarchy than PCat, then

$$
w^{*} \mathrm{CROSS}\left(\text { Morph, PCat') }>w^{*} \mathrm{CROSS}(\text { Morph, PCat })\right.
$$

Crucially: liaison violates *Cross from coalescence:

$$
\left(\text { PCat }[\mathrm{m} 1 \text { peti PCat })\left(\text { PCat }\left[\mathrm{m} 2 \mathrm{t}_{12 \mathrm{~m} 1}\right] \text { ami } \mathrm{m} 2\right] \text { PCat }\right) \text { peti.t ami }
$$

(4) The role of prosody: Formalization

Penalty from liaison: $\mu \cdot w^{*}$ CROSS(Morph, PCat) probability $\propto e^{- \text {-Penalty }} \quad$ greater Penalty \Rightarrow lower probability
p (liaison) increases both from

- increasing collocation frequency (decreases μ) and
- decreasing prosodic-hierarchy-level of the boundary separating W_{1} and W_{2},
because if PCat is lower in the hierarchy than PCat': w^{*} CROSS(Morph, PCat) $<w^{*}$ CROSS(Morph, PCat')

(5)

Summary

Summary

Gradient Symbolic Representations crucial uses:

- adult blend: $0.5 \cdot\left[\hat{\mathbf{W}}_{1} \mathcal{L}\right.$-analysis $]+0.3 \cdot\left[\mathcal{L} \hat{\mathbf{W}}_{2}\right.$-analysis $]$ formalization of Dowty (2003)

Summary

Gradient Symbolic Representations crucial uses:

- adult blend: $0.5 \cdot\left[\hat{\mathbf{W}}_{1} \mathcal{L}\right.$-a halysis] $+0.3 \cdot\left[\mathcal{L} \hat{\mathbf{W}}_{2}\right.$-analysis]
- many crucially differen gradient activity levels for different \mathscr{L}
$>\mathscr{L}$ of W_{1}
$>\mathscr{L}^{\text {of }} \mathrm{W}_{2}$
> z of PLURAL
$>z$ of dix
- pure floating activity of FEM
> Vs that elide
- acquisition process of gradually shifting activity of \mathscr{L} from W_{2} to W_{1}
- usage-based gradual increase of activity in lexicon of [$\mathrm{W}_{1} \mathrm{~W}_{2}$]
> implemented with negative morpheme boundary activity
Thatis all folks! - Thanks for your attentions

